B-math 2nd year Mid Semester Exam Subject : Analysis III

Time : 3.00 hours

Max.Marks 50.

1. a) Calculate the work done in moving a particle by a force $f(x, y) := (x^2 - y^2)\mathbf{i} + (2xy)\mathbf{j}$ once around the square bounded by the coordinate axes and the lines x = a, y = a in the counter clockwise direction. (5) b) Show that the vector field $f(x, y) := y\mathbf{i} - x\mathbf{j}$ is not a gradient. (10)

2. a) Let (P(x, y), Q(x, y)) be a given vector field on a domain $\Omega \subset \mathbb{R}^2$. Suppose there exists f(.), g(.) such that

$$\frac{\partial P}{\partial y}(x,y) - \frac{\partial Q}{\partial x}(x,y) = f(x)Q(x,y) - g(y)P(x,y),$$

for $(x, y) \in \Omega$. Show that

$$u(x,y) := e^{\int_{x_0}^x f(s) \, ds + \int_{y_0}^y g(t) \, dt}$$

for $(x_0, y_0), (x, y) \in \Omega$ is an integrating factor of the the equation

$$P(x,y) dx + Q(x,y) dy = 0.$$

(10)

b) Solve the equation in a) with an integrating factor as above, when $P(x, y) := 2x^2 + y^2$, $Q(x, y) := 2x^3 - xy$. (10)

3. a) For $Q := [0, 1] \times [0, 1]$. Define

$$f(x,y) = \left\{ \begin{array}{ccc} 3x+y & if & x=y\\ 0 & if & x\neq y \end{array} \right\}$$

Evaluate the integral $\int_{Q} \int_{Q} f(x, y) \, dy dx.$ (10) b) Evaluate the integral $\int_{Q} \int_{Q} f(x, y) \, dy dx$ when $f(x, y) := \sin(x + y)$ and $Q := [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}].$ (10) 4. Recall that the 'moment of inertia' of a region R in the plane about a line L is the (double)integral over R of $\delta^2(x, y)$ where

 $\delta(x,y):=$ perpendicuar distance of $(\mathbf{x},\mathbf{y})\in\mathbf{R}$ from the line L.

Let I_z denote the moment of inertia about the z-axis of a region R in the plane bounded by a simple closed curve ∂R . Show that there exists an integer n such that

$$nI_z = \int_{\partial R} x^3 dy - y^3 dx.$$
(10)